Graphviz  2.41.20171026.1811
multispline.c
Go to the documentation of this file.
1 /* $Id$Revision: */
2 /* vim:set shiftwidth=4 ts=8: */
3 
4 /*************************************************************************
5  * Copyright (c) 2011 AT&T Intellectual Property
6  * All rights reserved. This program and the accompanying materials
7  * are made available under the terms of the Eclipse Public License v1.0
8  * which accompanies this distribution, and is available at
9  * http://www.eclipse.org/legal/epl-v10.html
10  *
11  * Contributors: See CVS logs. Details at http://www.graphviz.org/
12  *************************************************************************/
13 
14 #include <multispline.h>
15 #include <delaunay.h>
16 #include <neatoprocs.h>
17 #include <math.h>
18 
19 
20 static boolean spline_merge(node_t * n)
21 {
22  return FALSE;
23 }
24 
25 static boolean swap_ends_p(edge_t * e)
26 {
27  return FALSE;
28 }
29 
30 static splineInfo sinfo = { swap_ends_p, spline_merge };
31 
32 typedef struct {
33  int i, j;
34 } ipair;
35 
36 typedef struct _tri {
38  struct _tri *nxttri;
39 } tri;
40 
41 typedef struct {
42  Ppoly_t poly; /* base polygon used for routing an edge */
43  tri **triMap; /* triMap[j] is list of all opposite sides of
44  triangles containing vertex j, represented
45  as the indices of the two points in poly */
46 } tripoly_t;
47 
48 /*
49  * Support for map from I x I -> I
50  */
51 typedef struct {
52  Dtlink_t link; /* cdt data */
53  int a[2]; /* key */
54  int t;
55 } item;
56 
57 static int cmpItem(Dt_t * d, int p1[], int p2[], Dtdisc_t * disc)
58 {
59  NOTUSED(d);
60  NOTUSED(disc);
61 
62  if (p1[0] < p2[0])
63  return -1;
64  else if (p1[0] > p2[0])
65  return 1;
66  else if (p1[1] < p2[1])
67  return -1;
68  else if (p1[1] > p2[1])
69  return 1;
70  else
71  return 0;
72 }
73 
74 /* newItem:
75  */
76 static void *newItem(Dt_t * d, item * objp, Dtdisc_t * disc)
77 {
78  item *newp = NEW(item);
79 
80  NOTUSED(disc);
81  newp->a[0] = objp->a[0];
82  newp->a[1] = objp->a[1];
83  newp->t = objp->t;
84 
85  return newp;
86 }
87 
88 static void freeItem(Dt_t * d, item * obj, Dtdisc_t * disc)
89 {
90  free(obj);
91 }
92 
93 static Dtdisc_t itemdisc = {
94  offsetof(item, a),
95  2 * sizeof(int),
96  offsetof(item, link),
97  (Dtmake_f) newItem,
98  (Dtfree_f) freeItem,
99  (Dtcompar_f) cmpItem,
100  NIL(Dthash_f),
101  NIL(Dtmemory_f),
102  NIL(Dtevent_f)
103 };
104 
105 static void addMap(Dt_t * map, int a, int b, int t)
106 {
107  item it;
108  int tmp;
109  if (a > b) {
110  tmp = a;
111  a = b;
112  b = tmp;
113  }
114  it.a[0] = a;
115  it.a[1] = b;
116  it.t = t;
117  dtinsert(map, &it);
118 }
119 
120 /* mapSegToTri:
121  * Create mapping from indices of side endpoints to triangle id
122  * We use a set rather than a bag because the segments used for lookup
123  * will always be a side of a polygon and hence have a unique triangle.
124  */
125 static Dt_t *mapSegToTri(surface_t * sf)
126 {
127  Dt_t *map = dtopen(&itemdisc, Dtoset);
128  int i, a, b, c;
129  int *ps = sf->faces;
130  for (i = 0; i < sf->nfaces; i++) {
131  a = *ps++;
132  b = *ps++;
133  c = *ps++;
134  addMap(map, a, b, i);
135  addMap(map, b, c, i);
136  addMap(map, c, a, i);
137  }
138  return map;
139 }
140 
141 static int findMap(Dt_t * map, int a, int b)
142 {
143  item it;
144  item *ip;
145  if (a > b) {
146  int tmp = a;
147  a = b;
148  b = tmp;
149  }
150  it.a[0] = a;
151  it.a[1] = b;
152  ip = (item *) dtsearch(map, &it);
153  assert(ip);
154  return ip->t;
155 }
156 
157 /*
158  * Support for map from I -> I
159  */
160 
161 typedef struct {
162  Dtlink_t link; /* cdt data */
163  int i; /* key */
164  int j;
165 } Ipair;
166 
167 static int cmpIpair(Dt_t * d, int *p1, int *p2, Dtdisc_t * disc)
168 {
169  NOTUSED(d);
170  NOTUSED(disc);
171 
172  return (*p1 - *p2);
173 }
174 
175 static void *newIpair(Dt_t * d, Ipair * objp, Dtdisc_t * disc)
176 {
177  Ipair *newp = NEW(Ipair);
178 
179  NOTUSED(disc);
180  newp->i = objp->i;
181  newp->j = objp->j;
182 
183  return newp;
184 }
185 
186 static void freeIpair(Dt_t * d, Ipair * obj, Dtdisc_t * disc)
187 {
188  free(obj);
189 }
190 
191 static Dtdisc_t ipairdisc = {
192  offsetof(Ipair, i),
193  sizeof(int),
194  offsetof(Ipair, link),
195  (Dtmake_f) newIpair,
196  (Dtfree_f) freeIpair,
197  (Dtcompar_f) cmpIpair,
198  NIL(Dthash_f),
199  NIL(Dtmemory_f),
200  NIL(Dtevent_f)
201 };
202 
203 static void vmapAdd(Dt_t * map, int i, int j)
204 {
205  Ipair obj;
206  obj.i = i;
207  obj.j = j;
208  dtinsert(map, &obj);
209 }
210 
211 static int vMap(Dt_t * map, int i)
212 {
213  Ipair *ip;
214  ip = (Ipair *) dtmatch(map, &i);
215  return ip->j;
216 }
217 
218 /* mapTri:
219  * Map vertex indices from router_t to tripoly_t coordinates.
220  */
221 static void mapTri(Dt_t * map, tri * tp)
222 {
223  for (; tp; tp = tp->nxttri) {
224  tp->v.i = vMap(map, tp->v.i);
225  tp->v.j = vMap(map, tp->v.j);
226  }
227 }
228 
229 /* addTri:
230  */
231 static tri *
232 addTri(int i, int j, tri * oldp)
233 {
234  tri *tp = NEW(tri);
235  tp->v.i = i;
236  tp->v.j = j;
237  tp->nxttri = oldp;
238  return tp;
239 }
240 
241 /* bisect:
242  * Return the angle bisecting the angle pp--cp--np
243  */
244 static double bisect(pointf pp, pointf cp, pointf np)
245 {
246  double theta, phi;
247  theta = atan2(np.y - cp.y, np.x - cp.x);
248  phi = atan2(pp.y - cp.y, pp.x - cp.x);
249  return (theta + phi) / 2.0;
250 }
251 
252 /* raySeg:
253  * Check if ray v->w intersects segment a--b.
254  */
255 static int raySeg(pointf v, pointf w, pointf a, pointf b)
256 {
257  int wa = wind(v, w, a);
258  int wb = wind(v, w, b);
259  if (wa == wb)
260  return 0;
261  if (wa == 0) {
262  return (wind(v, b, w) * wind(v, b, a) >= 0);
263  } else {
264  return (wind(v, a, w) * wind(v, a, b) >= 0);
265  }
266 }
267 
268 /* raySegIntersect:
269  * Find the point p where ray v->w intersects segment ai-bi, if any.
270  * Return 1 on success, 0 on failure
271  */
272 static int
273 raySegIntersect(pointf v, pointf w, pointf a, pointf b, pointf * p)
274 {
275  if (raySeg(v, w, a, b))
276  return line_intersect(v, w, a, b, p);
277  else
278  return 0;
279 }
280 
281 #ifdef DEVDBG
282 #include <psdbg.c>
283 #endif
284 
285 /* triPoint:
286  * Given the triangle vertex v, and point w so that v->w points
287  * into the polygon, return where the ray v->w intersects the
288  * polygon. The search uses all of the opposite sides of triangles
289  * with v as vertex.
290  * Return 0 on success; 1 on failure.
291  */
292 static int
293 triPoint(tripoly_t * trip, int vx, pointf v, pointf w, pointf * ip)
294 {
295  tri *tp;
296 
297  for (tp = trip->triMap[vx]; tp; tp = tp->nxttri) {
298  if (raySegIntersect
299  (v, w, trip->poly.ps[tp->v.i], trip->poly.ps[tp->v.j], ip))
300  return 0;
301  }
302 #ifdef DEVDBG
303  psInit();
304  psComment ("Failure in triPoint");
305  psColor("0 0 1");
306  psSeg (v, w);
307  for (tp = trip->triMap[vx]; tp; tp = tp->nxttri) {
308  psTri(v, trip->poly.ps[tp->v.i], trip->poly.ps[tp->v.j]);
309  }
310  psOut(stderr);
311 #endif
312  return 1;
313 }
314 
315 /* ctrlPtIdx:
316  * Find the index of v in the points polys->ps.
317  * We start at 1 since the point corresponding to 0
318  * will never be used as v.
319  */
320 static int ctrlPtIdx(pointf v, Ppoly_t * polys)
321 {
322  pointf w;
323  int i;
324  for (i = 1; i < polys->pn; i++) {
325  w = polys->ps[i];
326  if ((w.x == v.x) && (w.y == v.y))
327  return i;
328  }
329  return -1;
330 }
331 
332 #define SEP 15
333 
334 /* mkCtrlPts:
335  * Generate mult points associated with v.
336  * The points will lie on the ray bisecting the angle prev--v--nxt.
337  * The first point will aways be v.
338  * The rest are positioned equally spaced with maximum spacing SEP.
339  * In addition, they all lie within the polygon trip->poly.
340  * Parameter s gives the index after which a vertex lies on the
341  * opposite side. This is necessary to get the "curvature" of the
342  * path correct.
343  */
344 static pointf *mkCtrlPts(int s, int mult, pointf prev, pointf v,
345  pointf nxt, tripoly_t * trip)
346 {
347  pointf *ps;
348  int idx = ctrlPtIdx(v, &(trip->poly));
349  int i;
350  double d, sep, theta, sinTheta, cosTheta;
351  pointf q, w;
352 
353  if (idx < 0)
354  return NULL;
355 
356  ps = N_GNEW(mult, pointf);
357  theta = bisect(prev, v, nxt);
358  sinTheta = sin(theta);
359  cosTheta = cos(theta);
360  w.x = v.x + 100 * cosTheta;
361  w.y = v.y + 100 * sinTheta;
362  if (idx > s) {
363  if (wind(prev, v, w) != 1) {
364  sinTheta *= -1;
365  cosTheta *= -1;
366  w.x = v.x + 100 * cosTheta;
367  w.y = v.y + 100 * sinTheta;
368  }
369  } else if (wind(prev, v, w) != -1) {
370  sinTheta *= -1;
371  cosTheta *= -1;
372  w.x = v.x + 100 * cosTheta;
373  w.y = v.y + 100 * sinTheta;
374  }
375 
376  if (triPoint(trip, idx, v, w, &q)) {
377  return 0;
378  }
379 
380  d = DIST(q, v);
381  if (d >= mult * SEP)
382  sep = SEP;
383  else
384  sep = d / mult;
385  if (idx < s) {
386  for (i = 0; i < mult; i++) {
387  ps[i].x = v.x + i * sep * cosTheta;
388  ps[i].y = v.y + i * sep * sinTheta;
389  }
390  } else {
391  for (i = 0; i < mult; i++) {
392  ps[mult - i - 1].x = v.x + i * sep * cosTheta;
393  ps[mult - i - 1].y = v.y + i * sep * sinTheta;
394  }
395  }
396  return ps;
397 }
398 
399 /*
400  * Simple graph structure for recording the triangle graph.
401  */
402 
403 typedef struct {
404  int ne; /* no. of edges. */
405  int *edges; /* indices of edges adjacent to node. */
406  pointf ctr; /* center of triangle. */
407 } tnode;
408 
409 typedef struct {
410  int t, h; /* indices of head and tail nodes */
411  ipair seg; /* indices of points forming shared segment */
412  double dist; /* length of edge; usually distance between centers */
413 } tedge;
414 
415 typedef struct {
418  int nedges; /* no. of edges; no. of nodes is stored in router_t */
419 } tgraph;
420 
421 struct router_s {
422  int pn; /* no. of points */
423  pointf *ps; /* all points in configuration */
424  int *obs; /* indices in obstacle i are obs[i]...obs[i+1]-1 */
425  int *tris; /* indices of triangle i are tris[3*i]...tris[3*i+2] */
426  Dt_t *trimap; /* map from obstacle side (a,b) to index of adj. triangle */
427  int tn; /* no. of nodes in tg */
428  tgraph *tg; /* graph of triangles */
429 };
430 
431 /* triCenter:
432  * Given an array of points and 3 integer indices,
433  * compute and return the center of the triangle.
434  */
435 static pointf triCenter(pointf * pts, int *idxs)
436 {
437  pointf a = pts[*idxs++];
438  pointf b = pts[*idxs++];
439  pointf c = pts[*idxs++];
440  pointf p;
441  p.x = (a.x + b.x + c.x) / 3.0;
442  p.y = (a.y + b.y + c.y) / 3.0;
443  return p;
444 }
445 
446 #define MARGIN 32
447 
448 /* bbox:
449  * Compute bounding box of polygons, and return it
450  * with an added margin of MARGIN.
451  * Store total number of points in *np.
452  */
453 static boxf bbox(Ppoly_t** obsp, int npoly, int *np)
454 {
455  boxf bb;
456  int i, j, cnt = 0;
457  pointf p;
458  Ppoly_t* obs;
459 
460  bb.LL.x = bb.LL.y = MAXDOUBLE;
461  bb.UR.x = bb.UR.y = -MAXDOUBLE;
462 
463  for (i = 0; i < npoly; i++) {
464  obs = *obsp++;
465  for (j = 0; j < obs->pn; j++) {
466  p = obs->ps[j];
467  if (p.x < bb.LL.x)
468  bb.LL.x = p.x;
469  if (p.x > bb.UR.x)
470  bb.UR.x = p.x;
471  if (p.y < bb.LL.y)
472  bb.LL.y = p.y;
473  if (p.y > bb.UR.y)
474  bb.UR.y = p.y;
475  cnt++;
476  }
477  }
478 
479  *np = cnt;
480 
481  bb.LL.x -= MARGIN;
482  bb.LL.y -= MARGIN;
483  bb.UR.x += MARGIN;
484  bb.UR.y += MARGIN;
485 
486  return bb;
487 }
488 
489 static int *mkTriIndices(surface_t * sf)
490 {
491  int *tris = N_GNEW(3 * sf->nfaces, int);
492  memcpy(tris, sf->faces, 3 * sf->nfaces * sizeof(int));
493  return tris;
494 }
495 
496 /* degT:
497  * Given a pointer to an array of 3 integers, return
498  * the number not equal to -1
499  */
500 static int degT(int *ip)
501 {
502  ip++;
503  if (*ip++ == -1)
504  return 1;
505  if (*ip == -1)
506  return 2;
507  else
508  return 3;
509 }
510 
511 /* sharedEdge:
512  * Returns a pair of integer (x,y), x < y, where x and y are the
513  * indices of the two vertices of the shared edge.
514  */
515 static ipair sharedEdge(int *p, int *q)
516 {
517  ipair pt;
518  int tmp, p1, p2;
519  p1 = *p;
520  p2 = *(p + 1);
521  if (p1 == *q) {
522  if ((p2 != *(q + 1)) && (p2 != *(q + 2))) {
523  p2 = *(p + 2);
524  }
525  } else if (p1 == *(q + 1)) {
526  if ((p2 != *q) && (p2 != *(q + 2))) {
527  p2 = *(p + 2);
528  }
529  } else if (p1 == *(q + 2)) {
530  if ((p2 != *q) && (p2 != *(q + 1))) {
531  p2 = *(p + 2);
532  }
533  } else {
534  p1 = *(p + 2);
535  }
536 
537  if (p1 > p2) {
538  tmp = p1;
539  p1 = p2;
540  p2 = tmp;
541  }
542  pt.i = p1;
543  pt.j = p2;
544  return pt;
545 }
546 
547 /* addTriEdge:
548  * Add an edge to g, with tail t, head h, distance d, and shared
549  * segment seg.
550  */
551 static void addTriEdge(tgraph * g, int t, int h, double d, ipair seg)
552 {
553  tedge *ep = g->edges + g->nedges;
554  tnode *tp = g->nodes + t;
555  tnode *hp = g->nodes + h;
556 
557  ep->t = t;
558  ep->h = h;
559  ep->dist = DIST(tp->ctr, hp->ctr);
560  ep->seg = seg;
561 
562  tp->edges[tp->ne++] = g->nedges;
563  hp->edges[hp->ne++] = g->nedges;
564 
565  g->nedges++;
566 }
567 
568 static void freeTriGraph(tgraph * tg)
569 {
570  free(tg->nodes->edges);
571  free(tg->nodes);
572  free(tg->edges);
573  free(tg);
574 }
575 
576 /* mkTriGraph:
577  * Generate graph with triangles as nodes and an edge iff two triangles
578  * share an edge.
579  */
580 static tgraph *mkTriGraph(surface_t * sf, int maxv, pointf * pts)
581 {
582  tgraph *g;
583  tnode *np;
584  int j, i, ne = 0;
585  int *edgei;
586  int *jp;
587 
588  /* ne is twice no. of edges */
589  for (i = 0; i < 3 * sf->nfaces; i++)
590  if (sf->neigh[i] != -1)
591  ne++;
592 
593  g = GNEW(tgraph);
594 
595  /* plus 2 for nodes added as endpoints of an edge */
596  g->nodes = N_GNEW(sf->nfaces + 2, tnode);
597 
598  /* allow 1 possible extra edge per triangle, plus
599  * obstacles can have at most maxv triangles touching
600  */
601  edgei = N_GNEW(sf->nfaces + ne + 2 * maxv, int);
602  g->edges = N_GNEW(ne/2 + 2 * maxv, tedge);
603  g->nedges = 0;
604 
605  for (i = 0; i < sf->nfaces; i++) {
606  np = g->nodes + i;
607  np->ne = 0;
608  np->edges = edgei;
609  np->ctr = triCenter(pts, sf->faces + 3 * i);
610  edgei += degT(sf->neigh + 3 * i) + 1;
611  }
612  /* initialize variable nodes */
613  np = g->nodes + i;
614  np->ne = 0;
615  np->edges = edgei;
616  np++;
617  np->ne = 0;
618  np->edges = edgei + maxv;
619 
620  for (i = 0; i < sf->nfaces; i++) {
621  np = g->nodes + i;
622  jp = sf->neigh + 3 * i;
623  ne = 0;
624  while ((ne < 3) && ((j = *jp++) != -1)) {
625  if (i < j) {
626  double dist = DIST(np->ctr, (g->nodes + j)->ctr);
627  ipair seg =
628  sharedEdge(sf->faces + 3 * i, sf->faces + 3 * j);
629  addTriEdge(g, i, j, dist, seg);
630  }
631  ne++;
632  }
633  }
634 
635  return g;
636 }
637 
638 void freeRouter(router_t * rtr)
639 {
640  free(rtr->ps);
641  free(rtr->obs);
642  free(rtr->tris);
643  dtclose(rtr->trimap);
644  freeTriGraph(rtr->tg);
645  free(rtr);
646 }
647 
648 #ifdef DEVDBG
649 static void
650 prTriPoly (tripoly_t *poly, int si, int ei)
651 {
652  FILE* fp = fopen ("dumppoly","w");
653 
654  psInit();
655  psPoly (&(poly->poly));
656  psPoint (poly->poly.ps[si]);
657  psPoint (poly->poly.ps[ei]);
658  psOut(fp);
659  fclose(fp);
660 }
661 
662 static void
663 prTriGraph (router_t* rtr, int n)
664 {
665  FILE* fp = fopen ("dump","w");
666  int i;
667  pointf* pts = rtr->ps;
668  tnode* nodes = rtr->tg->nodes;
669  char buf[BUFSIZ];
670 
671  psInit();
672  for (i=0;i < rtr->tn; i++) {
673  pointf a = pts[rtr->tris[3*i]];
674  pointf b = pts[rtr->tris[3*i+1]];
675  pointf c = pts[rtr->tris[3*i+2]];
676  psTri (a, b,c);
677  sprintf (buf, "%d", i);
678  psTxt (buf, nodes[i].ctr);
679  }
680  for (i=rtr->tn;i < n; i++) {
681  sprintf (buf, "%d", i);
682  psTxt (buf, nodes[i].ctr);
683  }
684  psColor ("1 0 0");
685  for (i=0;i < rtr->tg->nedges; i++) {
686  tedge* e = rtr->tg->edges+i;
687  psSeg (nodes[e->t].ctr, nodes[e->h].ctr);
688  }
689  psOut(fp);
690  fclose(fp);
691 }
692 #endif
693 
694 router_t *mkRouter(Ppoly_t** obsp, int npoly)
695 {
696  router_t *rtr = NEW(router_t);
697  Ppoly_t* obs;
698  boxf bb;
699  pointf *pts;
700  int npts;
701  surface_t *sf;
702  int *segs;
703  double *x;
704  double *y;
705  int maxv = 4; /* default max. no. of vertices in an obstacle; set below */
706  /* points in obstacle i have indices obsi[i] through obsi[i+1]-1 in pts
707  */
708  int *obsi = N_NEW(npoly + 1, int);
709  int i, j, ix = 4, six = 0;
710 
711  bb = bbox(obsp, npoly, &npts);
712  npts += 4; /* 4 points of bounding box */
713  pts = N_GNEW(npts, pointf); /* all points are stored in pts */
714  segs = N_GNEW(2 * npts, int); /* indices of points forming segments */
715 
716  /* store bounding box in CCW order */
717  pts[0] = bb.LL;
718  pts[1].x = bb.UR.x;
719  pts[1].y = bb.LL.y;
720  pts[2] = bb.UR;
721  pts[3].x = bb.LL.x;
722  pts[3].y = bb.UR.y;
723  for (i = 1; i <= 4; i++) {
724  segs[six++] = i - 1;
725  if (i < 4)
726  segs[six++] = i;
727  else
728  segs[six++] = 0;
729  }
730 
731  /* store obstacles in CW order and generate constraint segments */
732  for (i = 0; i < npoly; i++) {
733  obsi[i] = ix;
734  obs = *obsp++;
735  for (j = 1; j <= obs->pn; j++) {
736  segs[six++] = ix;
737  if (j < obs->pn)
738  segs[six++] = ix + 1;
739  else
740  segs[six++] = obsi[i];
741  pts[ix++] = obs->ps[j - 1];
742  }
743  if (obs->pn > maxv)
744  maxv = obs->pn;
745  }
746  obsi[i] = ix;
747 
748  /* copy points into coordinate arrays */
749  x = N_GNEW(npts, double);
750  y = N_GNEW(npts, double);
751  for (i = 0; i < npts; i++) {
752  x[i] = pts[i].x;
753  y[i] = pts[i].y;
754  }
755  sf = mkSurface(x, y, npts, segs, npts);
756  free(x);
757  free(y);
758  free(segs);
759 
760  rtr->ps = pts;
761  rtr->pn = npts;
762  rtr->obs = obsi;
763  rtr->tris = mkTriIndices(sf);
764  rtr->trimap = mapSegToTri(sf);
765  rtr->tn = sf->nfaces;
766  rtr->tg = mkTriGraph(sf, maxv, pts);
767 
768  freeSurface(sf);
769  return rtr;
770 }
771 
772 /* finishEdge:
773  * Finish edge generation, clipping to nodes and adding arrowhead
774  * if necessary, and adding edge labels
775  */
776 static void
777 finishEdge (graph_t* g, edge_t* e, Ppoly_t spl, int flip, pointf p, pointf q)
778 {
779  int j;
780  pointf *spline = N_GNEW(spl.pn, pointf);
781  pointf p1, q1;
782 
783  if (flip) {
784  for (j = 0; j < spl.pn; j++) {
785  spline[spl.pn - 1 - j] = spl.ps[j];
786  }
787  p1 = q;
788  q1 = p;
789  }
790  else {
791  for (j = 0; j < spl.pn; j++) {
792  spline[j] = spl.ps[j];
793  }
794  p1 = p;
795  q1 = q;
796  }
797  if (Verbose > 1)
798  fprintf(stderr, "spline %s %s\n", agnameof(agtail(e)), agnameof(aghead(e)));
799  clip_and_install(e, aghead(e), spline, spl.pn, &sinfo);
800  free(spline);
801 
802  addEdgeLabels(g, e, p1, q1);
803 }
804 
805 #define EQPT(p,q) (((p).x==(q).x)&&((p).y==(q).y))
806 
807 /* tweakEnd:
808  * Hack because path routing doesn't know about the interiors
809  * of polygons. If the first or last segment of the shortest path
810  * lies along one of the polygon boundaries, the path may flip
811  * inside the polygon. To avoid this, we shift the point a bit.
812  *
813  * If the edge p(=poly.ps[s])-q of the shortest path is also an
814  * edge of the border polygon, move p slightly inside the polygon
815  * and return it. If prv and nxt are the two vertices adjacent to
816  * p in the polygon, let m be the midpoint of prv--nxt. We then
817  * move a tiny bit along the ray p->m.
818  *
819  * Otherwise, return p unchanged.
820  */
821 static Ppoint_t
822 tweakEnd (Ppoly_t poly, int s, Ppolyline_t pl, Ppoint_t q)
823 {
824  Ppoint_t prv, nxt, p;
825 
826  p = poly.ps[s];
827  nxt = poly.ps[(s + 1) % poly.pn];
828  if (s == 0)
829  prv = poly.ps[poly.pn-1];
830  else
831  prv = poly.ps[s - 1];
832  if (EQPT(q, nxt) || EQPT(q, prv) ){
833  Ppoint_t m;
834  double d;
835  m.x = (nxt.x + prv.x)/2.0 - p.x;
836  m.y = (nxt.y + prv.y)/2.0 - p.y;
837  d = LEN(m.x,m.y);
838  p.x += 0.1*m.x/d;
839  p.y += 0.1*m.y/d;
840  }
841  return p;
842 }
843 
844 static void
845 tweakPath (Ppoly_t poly, int s, int t, Ppolyline_t pl)
846 {
847  pl.ps[0] = tweakEnd (poly, s, pl, pl.ps[1]);
848  pl.ps[pl.pn-1] = tweakEnd (poly, t, pl, pl.ps[pl.pn-2]);
849 }
850 
851 
852 /* genroute:
853  * Generate splines for e and cohorts.
854  * Edges go from s to t.
855  * Return 0 on success.
856  */
857 static int
858 genroute(graph_t* g, tripoly_t * trip, int s, int t, edge_t * e, int doPolyline)
859 {
860  pointf eps[2];
861  Pvector_t evs[2];
862  pointf **cpts = NULL; /* lists of control points */
863  Ppoly_t poly;
864  Ppolyline_t pl, spl;
865  int i, j;
866  Ppolyline_t mmpl;
867  Pedge_t *medges = N_GNEW(trip->poly.pn, Pedge_t);
868  int pn;
869  int mult = ED_count(e);
870  node_t* head = aghead(e);
871  int rv = 0;
872 
873  poly.ps = NULL;
874  pl.pn = 0;
875  eps[0].x = trip->poly.ps[s].x, eps[0].y = trip->poly.ps[s].y;
876  eps[1].x = trip->poly.ps[t].x, eps[1].y = trip->poly.ps[t].y;
877  if (Pshortestpath(&(trip->poly), eps, &pl) < 0) {
878  agerr(AGWARN, "Could not create control points for multiple spline for edge (%s,%s)\n", agnameof(agtail(e)), agnameof(aghead(e)));
879  rv = 1;
880  goto finish;
881  }
882 
883  if (pl.pn == 2) {
884  makeStraightEdge(agraphof(head), e, doPolyline, &sinfo);
885  goto finish;
886  }
887 
888  evs[0].x = evs[0].y = 0;
889  evs[1].x = evs[1].y = 0;
890 
891  if ((mult == 1) || Concentrate) {
892  poly = trip->poly;
893  for (j = 0; j < poly.pn; j++) {
894  medges[j].a = poly.ps[j];
895  medges[j].b = poly.ps[(j + 1) % poly.pn];
896  }
897  tweakPath (poly, s, t, pl);
898  if (Proutespline(medges, poly.pn, pl, evs, &spl) < 0) {
899  agerr(AGWARN, "Could not create control points for multiple spline for edge (%s,%s)\n", agnameof(agtail(e)), agnameof(aghead(e)));
900  rv = 1;
901  goto finish;
902  }
903  finishEdge (g, e, spl, aghead(e) != head, eps[0], eps[1]);
904  free(medges);
905 
906  return 0;
907  }
908 
909  pn = 2 * (pl.pn - 1);
910 
911  cpts = N_NEW(pl.pn - 2, pointf *);
912  for (i = 0; i < pl.pn - 2; i++) {
913  cpts[i] =
914  mkCtrlPts(t, mult+1, pl.ps[i], pl.ps[i + 1], pl.ps[i + 2], trip);
915  if (!cpts[i]) {
916  agerr(AGWARN, "Could not create control points for multiple spline for edge (%s,%s)\n", agnameof(agtail(e)), agnameof(aghead(e)));
917  rv = 1;
918  goto finish;
919  }
920  }
921 
922  poly.ps = N_GNEW(pn, pointf);
923  poly.pn = pn;
924 
925  for (i = 0; i < mult; i++) {
926  poly.ps[0] = eps[0];
927  for (j = 1; j < pl.pn - 1; j++) {
928  poly.ps[j] = cpts[j - 1][i];
929  }
930  poly.ps[pl.pn - 1] = eps[1];
931  for (j = 1; j < pl.pn - 1; j++) {
932  poly.ps[pn - j] = cpts[j - 1][i + 1];
933  }
934  if (Pshortestpath(&poly, eps, &mmpl) < 0) {
935  agerr(AGWARN, "Could not create control points for multiple spline for edge (%s,%s)\n", agnameof(agtail(e)), agnameof(aghead(e)));
936  rv = 1;
937  goto finish;
938  }
939 
940  if (doPolyline) {
941  make_polyline (mmpl, &spl);
942  }
943  else {
944  for (j = 0; j < poly.pn; j++) {
945  medges[j].a = poly.ps[j];
946  medges[j].b = poly.ps[(j + 1) % poly.pn];
947  }
948  tweakPath (poly, 0, pl.pn-1, mmpl);
949  if (Proutespline(medges, poly.pn, mmpl, evs, &spl) < 0) {
950  agerr(AGWARN, "Could not create control points for multiple spline for edge (%s,%s)\n",
951  agnameof(agtail(e)), agnameof(aghead(e)));
952  rv = 1;
953  goto finish;
954  }
955  }
956  finishEdge (g, e, spl, aghead(e) != head, eps[0], eps[1]);
957 
958  e = ED_to_virt(e);
959  }
960 
961 finish :
962  if (cpts) {
963  for (i = 0; i < pl.pn - 2; i++)
964  free(cpts[i]);
965  free(cpts);
966  }
967  free(medges);
968  free(poly.ps);
969  return rv;
970 }
971 
972 #define NSMALL -0.0000000001
973 
974 /* inCone:
975  * Returns true iff q is in the convex cone a-b-c
976  */
977 static int
978 inCone (pointf a, pointf b, pointf c, pointf q)
979 {
980  return ((area2(q,a,b) >= NSMALL) && (area2(q,b,c) >= NSMALL));
981 }
982 
983 static pointf north = {0, 1};
984 static pointf northeast = {1, 1};
985 static pointf east = {1, 0};
986 static pointf southeast = {1, -1};
987 static pointf south = {0, -1};
988 static pointf southwest = {-1, -1};
989 static pointf west = {-1, 0};
990 static pointf northwest = {-1, 1};
991 
992 /* addEndpoint:
993  * Add node to graph representing spline end point p inside obstruction obs_id.
994  * For each side of obstruction, add edge from p to corresponding triangle.
995  * The node id of the new node in the graph is v_id.
996  * If p lies on the side of its node (sides != 0), we limit the triangles
997  * to those within 45 degrees of each side of the natural direction of p.
998  */
999 static void addEndpoint(router_t * rtr, pointf p, node_t* v, int v_id, int sides)
1000 {
1001  int obs_id = ND_lim(v);
1002  int starti = rtr->obs[obs_id];
1003  int endi = rtr->obs[obs_id + 1];
1004  pointf* pts = rtr->ps;
1005  int i, t;
1006  double d;
1007  pointf vr, v0, v1;
1008 
1009  switch (sides) {
1010  case TOP :
1011  vr = add_pointf (p, north);
1012  v0 = add_pointf (p, northwest);
1013  v1 = add_pointf (p, northeast);
1014  break;
1015  case TOP|RIGHT :
1016  vr = add_pointf (p, northeast);
1017  v0 = add_pointf (p, north);
1018  v1 = add_pointf (p, east);
1019  break;
1020  case RIGHT :
1021  vr = add_pointf (p, east);
1022  v0 = add_pointf (p, northeast);
1023  v1 = add_pointf (p, southeast);
1024  break;
1025  case BOTTOM|RIGHT :
1026  vr = add_pointf (p, southeast);
1027  v0 = add_pointf (p, east);
1028  v1 = add_pointf (p, south);
1029  break;
1030  case BOTTOM :
1031  vr = add_pointf (p, south);
1032  v0 = add_pointf (p, southeast);
1033  v1 = add_pointf (p, southwest);
1034  break;
1035  case BOTTOM|LEFT :
1036  vr = add_pointf (p, southwest);
1037  v0 = add_pointf (p, south);
1038  v1 = add_pointf (p, west);
1039  break;
1040  case LEFT :
1041  vr = add_pointf (p, west);
1042  v0 = add_pointf (p, southwest);
1043  v1 = add_pointf (p, northwest);
1044  break;
1045  case TOP|LEFT :
1046  vr = add_pointf (p, northwest);
1047  v0 = add_pointf (p, west);
1048  v1 = add_pointf (p, north);
1049  break;
1050  case 0 :
1051  break;
1052  default :
1053  assert (0);
1054  break;
1055  }
1056 
1057  rtr->tg->nodes[v_id].ne = 0;
1058  rtr->tg->nodes[v_id].ctr = p;
1059  for (i = starti; i < endi; i++) {
1060  ipair seg;
1061  seg.i = i;
1062  if (i < endi - 1)
1063  seg.j = i + 1;
1064  else
1065  seg.j = starti;
1066  t = findMap(rtr->trimap, seg.i, seg.j);
1067  if (sides && !inCone (v0, p, v1, pts[seg.i]) && !inCone (v0, p, v1, pts[seg.j]) && !raySeg(p,vr,pts[seg.i],pts[seg.j]))
1068  continue;
1069  d = DIST(p, (rtr->tg->nodes + t)->ctr);
1070  addTriEdge(rtr->tg, v_id, t, d, seg);
1071  }
1072 }
1073 
1074 /* edgeToSeg:
1075  * Given edge from i to j, find segment associated
1076  * with the edge.
1077  *
1078  * This lookup could be made faster by modifying the
1079  * shortest path algorithm to store the edges rather than
1080  * the nodes.
1081  */
1082 static ipair edgeToSeg(tgraph * tg, int i, int j)
1083 {
1084  ipair ip;
1085  tnode *np = tg->nodes + i;
1086  tedge *ep;
1087 
1088  for (i = 0; i < np->ne; i++) {
1089  ep = tg->edges + np->edges[i];
1090  if ((ep->t == j) || (ep->h == j))
1091  return (ep->seg);
1092  }
1093 
1094  assert(0);
1095  return ip;
1096 }
1097 
1098 static void
1099 freeTripoly (tripoly_t* trip)
1100 {
1101  int i;
1102  tri* tp;
1103  tri* nxt;
1104 
1105  free (trip->poly.ps);
1106  for (i = 0; i < trip->poly.pn; i++) {
1107  for (tp = trip->triMap[i]; tp; tp = nxt) {
1108  nxt = tp->nxttri;
1109  free (tp);
1110  }
1111  }
1112  free (trip->triMap);
1113  free (trip);
1114 }
1115 
1116 /* Auxiliary data structure used to translate a path of rectangles
1117  * into a polygon. Each side_t represents a vertex on one side of
1118  * the polygon. v is the index of the vertex in the global router_t,
1119  * and ts is a linked list of the indices of segments of sides opposite
1120  * to v in some triangle on the path. These lists will be translated
1121  * to polygon indices by mapTri, and stored in tripoly_t.triMap.
1122  */
1123 typedef struct {
1124  int v;
1126 } side_t;
1127 
1128 /* mkPoly:
1129  * Construct simple polygon from shortest path from t to s in g.
1130  * dad gives the indices of the triangles on path.
1131  * sx used to store index of s in points.
1132  * index of t is always 0
1133  */
1134 static tripoly_t *mkPoly(router_t * rtr, int *dad, int s, int t,
1135  pointf p_s, pointf p_t, int *sx)
1136 {
1137  tripoly_t *ps;
1138  int nxt;
1139  ipair p;
1140  int nt = 0;
1141  side_t *side1;
1142  side_t *side2;
1143  int i, idx;
1144  int cnt1 = 0;
1145  int cnt2 = 0;
1146  pointf *pts;
1147  pointf *pps;
1148  /* maps vertex index used in router_t to vertex index used in tripoly */
1149  Dt_t *vmap;
1150  tri **trim;
1151 
1152  /* count number of triangles in path */
1153  for (nxt = dad[t]; nxt != s; nxt = dad[nxt])
1154  nt++;
1155 
1156  side1 = N_NEW(nt + 4, side_t);
1157  side2 = N_NEW(nt + 4, side_t);
1158 
1159  nxt = dad[t];
1160  p = edgeToSeg(rtr->tg, nxt, t);
1161  side1[cnt1].ts = addTri(-1, p.j, NULL);
1162  side1[cnt1++].v = p.i;
1163  side2[cnt2].ts = addTri(-1, p.i, NULL);
1164  side2[cnt2++].v = p.j;
1165 
1166  t = nxt;
1167  for (nxt = dad[t]; nxt >= 0; nxt = dad[nxt]) {
1168  p = edgeToSeg(rtr->tg, t, nxt);
1169  if (p.i == side1[cnt1 - 1].v) {
1170  side1[cnt1 - 1].ts =
1171  addTri(side2[cnt2 - 1].v, p.j, side1[cnt1 - 1].ts);
1172  side2[cnt2 - 1].ts =
1173  addTri(side1[cnt1 - 1].v, p.j, side2[cnt2 - 1].ts);
1174  side2[cnt2].ts =
1175  addTri(side2[cnt2 - 1].v, side1[cnt1 - 1].v, NULL);
1176  side2[cnt2++].v = p.j;
1177  } else if (p.i == side2[cnt2 - 1].v) {
1178  side1[cnt1 - 1].ts =
1179  addTri(side2[cnt2 - 1].v, p.j, side1[cnt1 - 1].ts);
1180  side2[cnt2 - 1].ts =
1181  addTri(side1[cnt1 - 1].v, p.j, side2[cnt2 - 1].ts);
1182  side1[cnt1].ts =
1183  addTri(side2[cnt2 - 1].v, side1[cnt1 - 1].v, NULL);
1184  side1[cnt1++].v = p.j;
1185  } else if (p.j == side1[cnt1 - 1].v) {
1186  side1[cnt1 - 1].ts =
1187  addTri(side2[cnt2 - 1].v, p.i, side1[cnt1 - 1].ts);
1188  side2[cnt2 - 1].ts =
1189  addTri(side1[cnt1 - 1].v, p.i, side2[cnt2 - 1].ts);
1190  side2[cnt2].ts =
1191  addTri(side2[cnt2 - 1].v, side1[cnt1 - 1].v, NULL);
1192  side2[cnt2++].v = p.i;
1193  } else {
1194  side1[cnt1 - 1].ts =
1195  addTri(side2[cnt2 - 1].v, p.i, side1[cnt1 - 1].ts);
1196  side2[cnt2 - 1].ts =
1197  addTri(side1[cnt1 - 1].v, p.i, side2[cnt2 - 1].ts);
1198  side1[cnt1].ts =
1199  addTri(side2[cnt2 - 1].v, side1[cnt1 - 1].v, NULL);
1200  side1[cnt1++].v = p.i;
1201  }
1202  t = nxt;
1203  }
1204  side1[cnt1 - 1].ts = addTri(-2, side2[cnt2 - 1].v, side1[cnt1 - 1].ts);
1205  side2[cnt2 - 1].ts = addTri(-2, side1[cnt1 - 1].v, side2[cnt2 - 1].ts);
1206 
1207  /* store points in pts starting with t in 0,
1208  * then side1, then s, then side2
1209  */
1210  vmap = dtopen(&ipairdisc, Dtoset);
1211  vmapAdd(vmap, -1, 0);
1212  vmapAdd(vmap, -2, cnt1 + 1);
1213  pps = pts = N_GNEW(nt + 4, pointf);
1214  trim = N_NEW(nt + 4, tri *);
1215  *pps++ = p_t;
1216  idx = 1;
1217  for (i = 0; i < cnt1; i++) {
1218  vmapAdd(vmap, side1[i].v, idx);
1219  *pps++ = rtr->ps[side1[i].v];
1220  trim[idx++] = side1[i].ts;
1221  }
1222  *pps++ = p_s;
1223  idx++;
1224  for (i = cnt2 - 1; i >= 0; i--) {
1225  vmapAdd(vmap, side2[i].v, idx);
1226  *pps++ = rtr->ps[side2[i].v];
1227  trim[idx++] = side2[i].ts;
1228  }
1229 
1230  for (i = 0; i < nt + 4; i++) {
1231  mapTri(vmap, trim[i]);
1232  }
1233 
1234  ps = NEW(tripoly_t);
1235  ps->poly.pn = nt + 4; /* nt triangles gives nt+2 points plus s and t */
1236  ps->poly.ps = pts;
1237  ps->triMap = trim;
1238 
1239  free (side1);
1240  free (side2);
1241  dtclose(vmap);
1242  *sx = cnt1 + 1; /* index of s in ps */
1243  return ps;
1244 }
1245 
1246 /* resetGraph:
1247  * Remove edges and nodes added for current edge routing
1248  */
1249 static void resetGraph(tgraph * g, int ncnt, int ecnt)
1250 {
1251  int i;
1252  tnode *np = g->nodes;
1253  g->nedges = ecnt;
1254  for (i = 0; i < ncnt; i++) {
1255  if (np->edges + np->ne == (np + 1)->edges)
1256  np->ne--;
1257  np++;
1258  }
1259 }
1260 
1261 #define PQTYPE int
1262 #define PQVTYPE float
1263 
1264 #define PQ_TYPES
1265 #include "fPQ.h"
1266 #undef PQ_TYPES
1267 
1268 typedef struct {
1269  PQ pq;
1271  int *idxs;
1272 } PPQ;
1273 
1274 #define N_VAL(pq,n) ((PPQ*)pq)->vals[n]
1275 #define N_IDX(pq,n) ((PPQ*)pq)->idxs[n]
1276 
1277 #define PQ_CODE
1278 #include "fPQ.h"
1279 #undef PQ_CODE
1280 
1281 #define N_DAD(n) dad[n]
1282 #define E_WT(e) (e->dist)
1283 #define UNSEEN -MAXFLOAT
1284 
1285 /* triPath:
1286  * Find the shortest path with lengths in g from
1287  * v0 to v1. The returned vector (dad) encodes the
1288  * shorted path from v1 to v0. That path is given by
1289  * v1, dad[v1], dad[dad[v1]], ..., v0.
1290  */
1291 static int *
1292 triPath(tgraph * g, int n, int v0, int v1, PQ * pq)
1293 {
1294  int i, j, adjn;
1295  double d;
1296  tnode *np;
1297  tedge *e;
1298  int *dad = N_NEW(n, int);
1299 
1300  for (i = 0; i < pq->PQsize; i++)
1301  N_VAL(pq, i) = UNSEEN;
1302 
1303  PQinit(pq);
1304  N_DAD(v0) = -1;
1305  N_VAL(pq, v0) = 0;
1306  if (PQinsert(pq, v0))
1307  return NULL;
1308 
1309  while ((i = PQremove(pq)) != -1) {
1310  N_VAL(pq, i) *= -1;
1311  if (i == v1)
1312  break;
1313  np = g->nodes + i;
1314  for (j = 0; j < np->ne; j++) {
1315  e = g->edges + np->edges[j];
1316  if (e->t == i)
1317  adjn = e->h;
1318  else
1319  adjn = e->t;
1320  if (N_VAL(pq, adjn) < 0) {
1321  d = -(N_VAL(pq, i) + E_WT(e));
1322  if (N_VAL(pq, adjn) == UNSEEN) {
1323  N_VAL(pq, adjn) = d;
1324  N_DAD(adjn) = i;
1325  if (PQinsert(pq, adjn)) return NULL;
1326  } else if (N_VAL(pq, adjn) < d) {
1327  PQupdate(pq, adjn, d);
1328  N_DAD(adjn) = i;
1329  }
1330  }
1331  }
1332  }
1333  return dad;
1334 }
1335 
1336 /* makeMultiSpline:
1337  * FIX: we don't really use the shortest path provided by ED_path,
1338  * so avoid in neato spline code.
1339  * Return 0 on success.
1340  */
1341 int makeMultiSpline(graph_t* g, edge_t* e, router_t * rtr, int doPolyline)
1342 {
1343  Ppolyline_t line = ED_path(e);
1344  node_t *t = agtail(e);
1345  node_t *h = aghead(e);
1346  pointf t_p = line.ps[0];
1347  pointf h_p = line.ps[line.pn - 1];
1348  tripoly_t *poly;
1349  int idx;
1350  int *sp;
1351  int t_id = rtr->tn;
1352  int h_id = rtr->tn + 1;
1353  int ecnt = rtr->tg->nedges;
1354  PPQ pq;
1355  PQTYPE *idxs;
1356  PQVTYPE *vals;
1357  int ret;
1358 
1359  /* Add endpoints to triangle graph */
1360  addEndpoint(rtr, t_p, t, t_id, ED_tail_port(e).side);
1361  addEndpoint(rtr, h_p, h, h_id, ED_head_port(e).side);
1362 
1363  /* Initialize priority queue */
1364  PQgen(&pq.pq, rtr->tn + 2, -1);
1365  idxs = N_GNEW(pq.pq.PQsize + 1, PQTYPE);
1366  vals = N_GNEW(pq.pq.PQsize + 1, PQVTYPE);
1367  vals[0] = 0;
1368  pq.vals = vals + 1;
1369  pq.idxs = idxs + 1;
1370 
1371  /* Find shortest path of triangles */
1372  sp = triPath(rtr->tg, rtr->tn+2, h_id, t_id, (PQ *) & pq);
1373 
1374  free(vals);
1375  free(idxs);
1376  PQfree(&(pq.pq), 0);
1377 
1378  /* Use path of triangles to generate guiding polygon */
1379  if (sp) {
1380  poly = mkPoly(rtr, sp, h_id, t_id, h_p, t_p, &idx);
1381  free(sp);
1382 
1383  /* Generate multiple splines using polygon */
1384  ret = genroute(g, poly, 0, idx, e, doPolyline);
1385  freeTripoly (poly);
1386  }
1387  else ret = -1;
1388 
1389  resetGraph(rtr->tg, rtr->tn, ecnt);
1390  return ret;
1391 }
int(* Dtcompar_f)(Dt_t *, void *, void *, Dtdisc_t *)
Definition: cdt.h:40
unsigned int(* Dthash_f)(Dt_t *, void *, Dtdisc_t *)
Definition: cdt.h:41
int i
Definition: multispline.c:33
double dist
Definition: multispline.c:412
CDT_API int dtclose(Dt_t *)
int nedges
Definition: multispline.c:418
#define N_NEW(n, t)
Definition: memory.h:36
void *(* Dtmake_f)(Dt_t *, void *, Dtdisc_t *)
Definition: cdt.h:38
int pn
Definition: pathgeom.h:36
#define head
Definition: dthdr.h:19
#define PQTYPE
Definition: multispline.c:1261
tri * ts
Definition: multispline.c:1125
CDT_API Dtmethod_t * Dtoset
Definition: cdt.h:166
#define UNSEEN
Definition: multispline.c:1283
Definition: utils.c:981
#define PQVTYPE
Definition: multispline.c:1262
#define ED_head_port(e)
Definition: types.h:591
Dt_t * trimap
Definition: multispline.c:426
double x
Definition: pathgeom.h:27
int Proutespline(Pedge_t *barriers, int n_barriers, Ppolyline_t input_route, Pvector_t endpoint_slopes[2], Ppolyline_t *output_route)
#define assert(x)
Definition: cghdr.h:47
int * faces
Definition: delaunay.h:23
Definition: geom.h:28
#define NOTUSED(var)
Definition: cghdr.h:54
#define RIGHT
Definition: const.h:119
Definition: cdt.h:80
COORD area2(Ppoint_t, Ppoint_t, Ppoint_t)
Definition: visibility.c:56
int * idxs
Definition: multispline.c:1271
#define TOP
Definition: const.h:120
void make_polyline(Ppolyline_t line, Ppolyline_t *sline)
Definition: util.c:82
void clip_and_install(edge_t *fe, node_t *hn, pointf *ps, int pn, splineInfo *info)
Definition: splines.c:241
#define NSMALL
Definition: multispline.c:972
int a[2]
Definition: multispline.c:53
int * edges
Definition: multispline.c:405
int * neigh
Definition: delaunay.h:24
int agerr(agerrlevel_t level, const char *fmt,...)
Definition: agerror.c:141
router_t * mkRouter(Ppoly_t **obsp, int npoly)
Definition: multispline.c:694
Ppoint_t b
Definition: pathgeom.h:42
#define MARGIN
Definition: multispline.c:446
int j
Definition: multispline.c:33
#define E_WT(e)
Definition: multispline.c:1282
node_t * t
Definition: utils.c:984
ipair seg
Definition: multispline.c:411
tnode * nodes
Definition: multispline.c:416
int makeMultiSpline(graph_t *g, edge_t *e, router_t *rtr, int doPolyline)
Definition: multispline.c:1341
Definition: cgraph.h:388
CDT_API Dt_t * dtopen(Dtdisc_t *, Dtmethod_t *)
Definition: dtopen.c:9
struct _tri tri
CGRAPH_API Agraph_t * agraphof(void *obj)
Definition: obj.c:185
CGRAPH_API Agnode_t * agtail(Agedge_t *e)
Definition: edge.c:525
void addEdgeLabels(graph_t *g, edge_t *e, pointf rp, pointf rq)
Definition: splines.c:1355
void PQinsert(Halfedge *he, Site *v, double offset)
Definition: heap.c:45
#define DIST(p, q)
Definition: geom.h:60
tri ** triMap
Definition: multispline.c:43
#define ED_tail_port(e)
Definition: types.h:600
ipair v
Definition: multispline.c:37
#define NIL(t)
Definition: dthdr.h:13
tedge * edges
Definition: multispline.c:417
int
Definition: grammar.c:1264
CGRAPH_API Agnode_t * aghead(Agedge_t *e)
Definition: edge.c:533
#define dtsearch(d, o)
Definition: cdt.h:260
#define LEN(a, b)
Definition: geom.h:57
double y
Definition: geom.h:28
CGRAPH_API char * agnameof(void *)
Definition: id.c:143
#define dtmatch(d, o)
Definition: cdt.h:261
#define ED_count(e)
Definition: types.h:583
pointf ctr
Definition: multispline.c:406
int nfaces
Definition: delaunay.h:22
#define LEFT
Definition: const.h:121
void *(* Dtmemory_f)(Dt_t *, void *, size_t, Dtdisc_t *)
Definition: cdt.h:36
int h
Definition: multispline.c:410
Definition: grammar.c:79
#define BOTTOM
Definition: const.h:118
int t
Definition: multispline.c:54
#define N_VAL(pq, n)
Definition: multispline.c:1274
PQ pq
Definition: multispline.c:1269
int t
Definition: multispline.c:410
#define ND_lim(n)
Definition: types.h:511
int wind(Ppoint_t a, Ppoint_t b, Ppoint_t c)
Definition: visibility.c:65
#define EQPT(p, q)
Definition: multispline.c:805
Ppoint_t * ps
Definition: pathgeom.h:35
if(aagss+aagstacksize-1<=aagssp)
Definition: grammar.c:1332
#define dtinsert(d, o)
Definition: cdt.h:262
void freeSurface(surface_t *s)
Definition: delaunay.c:766
Dtlink_t link
Definition: multispline.c:162
int j
Definition: multispline.c:164
#define ED_to_virt(e)
Definition: types.h:602
EXTERN unsigned char Concentrate
Definition: globals.h:76
#define NULL
Definition: logic.h:39
#define GNEW(t)
Definition: memory.h:37
double x
Definition: geom.h:28
int line_intersect(pointf a, pointf b, pointf c, pointf d, pointf *p)
Definition: geom.c:407
EXTERN unsigned char Verbose
Definition: globals.h:64
struct item_s item
int Pshortestpath(Ppoly_t *boundary, Ppoint_t endpoints[2], Ppolyline_t *output_route)
surface_t * mkSurface(double *x, double *y, int n, int *segs, int nsegs)
Definition: delaunay.c:760
#define N_DAD(n)
Definition: multispline.c:1281
Ppoint_t a
Definition: pathgeom.h:42
pointf LL
Definition: geom.h:35
void makeStraightEdge(graph_t *g, edge_t *e, int edgetype, splineInfo *info)
Definition: routespl.c:936
#define ED_path(e)
Definition: types.h:596
pointf * ps
Definition: multispline.c:423
int(* Dtevent_f)(Dt_t *, int, void *, Dtdisc_t *)
Definition: cdt.h:42
PQVTYPE * vals
Definition: multispline.c:1270
void(* Dtfree_f)(Dt_t *, void *, Dtdisc_t *)
Definition: cdt.h:39
Definition: cdt.h:99
Ppoly_t poly
Definition: multispline.c:42
Definition: pathgeom.h:26
int * obs
Definition: multispline.c:424
double y
Definition: pathgeom.h:27
struct _tri * nxttri
Definition: multispline.c:38
int i
Definition: multispline.c:163
double dist(Site *s, Site *t)
Definition: site.c:41
int ne
Definition: multispline.c:404
#define SEP
Definition: multispline.c:332
tgraph * tg
Definition: multispline.c:428
void freeRouter(router_t *rtr)
Definition: multispline.c:638
int * tris
Definition: multispline.c:425
pointf UR
Definition: geom.h:35
Definition: geom.h:35
#define N_GNEW(n, t)
Definition: agxbuf.c:20
#define FALSE
Definition: cgraph.h:35
#define MAXDOUBLE
Definition: arith.h:64
#define NEW(t)
Definition: memory.h:35